Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Sci Rep ; 12(1): 21146, 2022 12 07.
Article En | MEDLINE | ID: mdl-36476814

Antibiotic failures in treatments of bacterial infections from resistant strains have been a global health concern, mainly due to the proportions they can reach in the coming years. Making microorganisms susceptible to existing antibiotics is an alternative to solve this problem. This study applies a physicochemical method to the standard treatment for modulating the synergistic response towards circumventing the mechanisms of bacterial resistance. Photodynamic inactivation protocols (curcumina 10 µM, 10 J/cm2) and their cellular behavior in the presence of amoxicillin, erythromycin, and gentamicin antibiotics were analyzed from the dynamics of bacterial interaction of a molecule that produces only toxic effects after the absorption of a specific wavelength of light. In addition to bacterial viability, the interaction of curcumin, antibiotics and bacteria were imaged and chemically analyzed using confocal fluorescence microscopy and Fourier-transform infrared spectroscopy (FTIR). The interaction between therapies depended on the sequential order of application, metabolic activity, and binding of bacterial cell surface biomolecules. The results demonstrated a potentiating effect of the antibiotic with up to to 32-fold reduction in minimum inhibitory concentrations and mean reductions of 7 log CFU/ml by physicochemical action at bacterial level after the photodynamic treatment. The changes observed as a result of bacteria-antibiotic interactions, such as membrane permeabilization and increase in susceptibility, may be a possibility for solving the problem of microbial multidrug resistance.


Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology
2.
Vaccines (Basel) ; 9(12)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34960155

Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform. Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19. The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrating convergent evolution, associated with increased transmissibility and immune evasion. Thus, the identification and understanding of these mutations is crucial for the production of new, optimized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development is an important feature that cannot be ignored. Incorporating the spike protein and its variations into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine development using VLP technology.

3.
ACS Omega ; 6(25): 16524-16534, 2021 Jun 29.
Article En | MEDLINE | ID: mdl-34235324

HIV-infected cells persist for decades in patients administered with antiretroviral therapy (ART). Meanwhile, an alarming surge in drug-resistant HIV viruses has been occurring. Addressing these issues, we propose the application of photoimmunotherapy (PIT) against not only HIV Env-expressing cells but also HIV. Previously, we showed that a human anti-gp41 antibody (7B2) conjugated to cationic or anionic photosensitizers (PSs) could specifically target and kill the HIV Env-expressing cells. Here, our photolysis studies revealed that the binding of photoimmunoconjugates (PICs) on the membrane of HIV Env-expressing cells is sufficient to induce necrotic cell death due to physical damage to the membrane by singlet oxygen, which is independent of the type of PSs. This finding persuaded us to study the virus photoinactivation of PICs using two HIV-1 strains, X4 HIV-1 NL4-3 and JR-CSF virus. We observed that the PICs could destroy the viral strains, probably via physical damage on the HIV envelope. In conclusion, we report the application of PIT as a possible dual-tool for HIV immunotherapy and ART by killing HIV-expressing cells and cell-free HIV, respectively.

4.
Mol Hum Reprod ; 26(12): 938-952, 2020 12 10.
Article En | MEDLINE | ID: mdl-33118034

Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.


GTP Phosphohydrolases/metabolism , Oocytes/metabolism , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/physiology , Female , GTP Phosphohydrolases/genetics , Homeostasis/physiology , Mice , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Muscle, Skeletal/metabolism , Signal Transduction
5.
Front Genet ; 11: 762, 2020.
Article En | MEDLINE | ID: mdl-32760430

There is evidence of a purifying filter acting in the female germline to prevent the expansion of deleterious mutations in the mitochondrial DNA (mtDNA). Given our poor understanding of this filter, here we investigate the competence of the mouse embryo to eliminate dysfunctional mitochondria. Toward that, mitochondria were damaged by photoirradiation of NZB/BINJ zygotes loaded with chloromethyl-X-rosamine (CMXRos). The resultant cytoplasm was then injected into C57BL/6J zygotes to track the levels of NZB/BINJ mtDNA during the preimplantation development. About 30% of NZB/BINJ mtDNA was present after injection, regardless of using photoirradiated or non-photoirradiated cytoplasmic donors. Moreover, injection of photoirradiated-derived cytoplasm did not impact development into blastocysts. However, lower levels of NZB/BINJ mtDNA were present in blastocysts when comparing injection of photoirradiated (24.7% ± 1.43) versus non-photoirradiated (31.4% ± 1.43) cytoplasm. Given that total mtDNA content remained stable between stages (zygotes vs. blastocysts) and treatments (photoirradiated vs. non-photoirradiated), these results indicate that the photoirradiated-derived mtDNA was replaced by recipient mtDNA in blastocysts. Unexpectedly, treatment with rapamycin prevented the drop in NZB/BINJ mtDNA levels associated with injection of photoirradiated cytoplasm. Additionally, analysis of mitochondria-autophagosome colocalization provided no evidence that photoirradiated mitochondria were eliminated by autophagy. In conclusion, our findings give evidence that the mouse embryo is competent to mitigate the levels of damaged mitochondria, which might have implications to the transmission of mtDNA-encoded disease.

6.
Photochem Photobiol ; 96(6): 1208-1214, 2020 11.
Article En | MEDLINE | ID: mdl-32668506

Photodynamic procedures have been used in many applications, ranging from cancer treatment to microorganism inactivation. Photodynamic reactions start with the activation of a photosensitizing molecule with light, leading to the production of cytotoxic molecules that promote cell death. However, establishing the correct light and photosensitizer dosimetry for a broadband light source remains challenging. In this study, we proposed a theoretical mathematical model for the photodegradation of protoporphyrin IX (PpIX), when irradiated by multi-wavelength light sources. The theoretical model predicts the experimental photobleaching (temporal change in PpIX concentration) of PpIX for different light sources. We showed that photobleaching occurs independently of the light source wavelengths but instead depends only on the number of absorbed photons. The model presented here can be used as an important mathematical approach to better understand current photodynamic therapy protocols and help achieve optimization of the doses delivered.

7.
FASEB J ; 34(6): 7644-7660, 2020 06.
Article En | MEDLINE | ID: mdl-32281181

Mitochondrial function, largely regulated by the dynamics of this organelle, is inextricably linked to the oocyte health. In comparison with most somatic cells, mitochondria in oocytes are smaller and rounder in appearance, suggesting limited fusion. The functional implications of this distinct morphology, and how changes in the mitochondrial shape translate to mitochondrial function in oogenesis is little understood. We, therefore, asked whether the pro-fusion proteins mitofusins 1 (MFN1) and 2 (MFN2) are required for the oocyte development. Here we show that oocyte-specific deletion of Mfn1, but not Mfn2, prevents the oocyte growth and ovulation due to a block in folliculogenesis. We pinpoint the loss of oocyte growth and ovulation to impaired PI3K-Akt signaling and disrupted oocyte-somatic cell communication. In support, the double loss of Mfn1 and Mfn2 partially rescues the impaired PI3K-Akt signaling and defects in oocyte development secondary to the single loss of Mfn1. Together, this work demonstrates that the mitochondrial function influences the cellular signaling during the oocyte development, and highlights the importance of distinct, nonredundant roles of MFN1 and MFN2 in oogenesis.


Cell Communication/physiology , GTP Phosphohydrolases/metabolism , Oocytes/metabolism , Ovarian Follicle/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/physiology , Oocytes/physiology , Oogenesis/physiology , Ovulation/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology
8.
J Biophotonics ; 12(1): e201800162, 2019 01.
Article En | MEDLINE | ID: mdl-30091532

Diabetes is a complex metabolic disease and has chronic complications. It has been considered a serious public health problem. The aim of the current study was to evaluate skin glycated proteins through fluorescence and Raman techniques. One hundred subjects were invited to participate in the study. Six volunteers did not attend due to exclusion criteria or a change of mind about participating. Therefore, 94 volunteers were grouped according to age range (20-80 years), health condition (nondiabetic, with insulin resistance [IR] and/or diabetic) and Fitzpatrick skin type (I-VI). The fluorescence spectrometer and the portable Raman spectroscopy system were used to measure glycated proteins from the skin. There was elevated skin autofluorescence in healthy middle-aged and elderly subjects, as well as in patients with IR and/or diabetes. Regarding Raman spectroscopy, changes in the skin hydration state, degradation of type I collagen and greater glycation were related for diabetes and chronological aging. Weak and positive correlation between the skin autofluorescence and the Raman peaks ratio (855/876) related to the glycated proteins was also found. Raman spectroscopy shows several bands for spectral analyses, complementing the fluorescence data. Therefore, this study contributes to understanding of the optical of human skin for noninvasive diabetes screening.


Diabetes Mellitus/metabolism , Proteins/metabolism , Skin/metabolism , Spectrometry, Fluorescence/methods , Spectrum Analysis, Raman/methods , Adult , Case-Control Studies , Female , Glycosylation , Humans , Male , Middle Aged , Young Adult
9.
ACS Omega ; 3(1): 937-945, 2018 Jan 31.
Article En | MEDLINE | ID: mdl-30023793

There is a growing appreciation that engineered biointerfaces can regulate cell behaviors, or functions. Most systems aim to mimic the cell-friendly extracellular matrix environment and incorporate protein ligands; however, the understanding of how a ligand-free system can achieve this is limited. Cell scaffold materials comprised of interfused chitosan-cellulose hydrogels promote cell attachment in ligand-free systems, and we demonstrate the role of cellulose molecular weight, MW, and chitosan content and MW in controlling material properties and thus regulating cell attachment. Semi-interpenetrating network (SIPN) gels, generated from cellulose/ionic liquid/cosolvent solutions, using chitosan solutions as phase inversion solvents, were stable and obviated the need for chemical coupling. Interface properties, including surface zeta-potential, dielectric constant, surface roughness, and shear modulus, were modified by varying the chitosan degree of polymerization and solution concentration, as well as the source of cellulose, creating a family of cellulose-chitosan SIPN materials. These features, in turn, affect cell attachment onto the hydrogels and the utility of this ligand-free approach is extended by forecasting cell attachment using regression modeling to isolate the effects of individual parameters in an initially complex system. We demonstrate that increasing the charge density, and/or shear modulus, of the hydrogel results in increased cell attachment.

10.
Anim Reprod ; 15(3): 231-238, 2018 Aug 17.
Article En | MEDLINE | ID: mdl-34178146

Oocyte mitochondria are increased in number, smaller, and rounder in appearance than mitochondria in somatic cells. Moreover, mitochondrial numbers and activity are narrowly tied with oocyte quality because of the key role of mitochondria to oocyte maturation. During oocyte maturation, mitochondria display great mobility and cluster at specific sites to meet the high energy demand. Conversely, oocyte mitochondria are not required during early oogenesis as coupling with granulosa cells is sufficient to support gamete's needs. In part, this might be explained by the importance of protecting mitochondria from oxidative damage that result in mutations in mitochondrial DNA (mtDNA). Considering mitochondria are transmitted exclusively by the mother, oocytes with mtDNA mutations may lead to diseases in offspring. Thus, to counterbalance mutation expansion, the oocyte has developed specific mechanisms to filter out deleterious mtDNA molecules. Herein, we discuss the role of mitochondria on oocyte developmental potential and recent evidence supporting a purifying filter against deleterious mtDNA mutations in oocytes.

11.
Sci Total Environ ; 613-614: 160-167, 2018 Feb 01.
Article En | MEDLINE | ID: mdl-28915453

Characteristics of soil organic matter (SOM) are important, especially in the Amazon region, which represents one of the world's most relevant carbon reservoirs. In this work, the concentrations of carbon and differences in its composition (humification indexes) were evaluated and compared for several horizons (0 to 390cm) of three typical Amazonian podzol profiles. Fluorescence spectroscopy was used to investigate the humic acid (HA) fractions of SOM isolated from the different samples. Simple and labile carbon structures appeared to be accumulated in surface horizons, while more complex humified compounds were leached and accumulated in intermediate and deeper Bh horizons. The results suggested that the humic acids originated from lignin and its derivatives, and that lignin could accumulate in some Bh horizons. The HA present in deeper Bh horizons appeared to originate from different formation pathways, since these horizons showed different compositions. There were significant compositional changes of HA with depth, with four types of organic matter: recalcitrant, humified, and old dating; labile and young dating; humified and young dating; and little humified and old dating. Therefore, the humification process had no direct relation with the age of the organic matter in the Amazonian podzols.

12.
Biotechnol Biofuels ; 10: 254, 2017.
Article En | MEDLINE | ID: mdl-29118851

BACKGROUND: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stand out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify novel biocatalysts that could improve industrial lignocellulose conversion. RESULTS: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-ß-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. CONCLUSIONS: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation.

13.
Sci Rep ; 7(1): 7579, 2017 08 08.
Article En | MEDLINE | ID: mdl-28790381

Immunotoxins (ITs), which consist of antibodies conjugated to toxins, have been proposed as a treatment for cancer and chronic infections. To develop and improve the ITs, different toxins such as ricin, have been used, aiming for higher efficacy against target cells. The toxin pulchellin, isolated from the Abrus pulchellus plant, has similar structure and function as ricin. Here we have compared two plant toxins, recombinant A chains from ricin (RAC) and pulchellin (PAC) toxins, for their ability to kill HIV Env-expressing cells. In this study, RAC and PAC were produced in E. coli, and chromatographically purified, then chemically conjugated to two different anti-HIV monoclonal antibodies (MAbs), anti-gp120 MAb 924 or anti-gp41 MAb 7B2. These conjugates were characterized biochemically and immunologically. Cell internalization was studied by flow cytometry and confocal microscopy. Results showed that PAC can function within an effective IT. The ITs demonstrated specific binding against native antigens on persistently HIV-infected cells and recombinant antigens on Env-transfected cells. PAC cytotoxicity appears somewhat less than RAC, the standard for comparison. This is the first report that PAC may have utility for the design and construction of therapeutic ITs, highlighting the potential role for specific cell targeting.


Cell Survival/drug effects , Immunotoxins/pharmacology , Lactones/pharmacology , Sesquiterpenes/pharmacology , env Gene Products, Human Immunodeficiency Virus/metabolism , Antibodies, Monoclonal/metabolism , Cell Line , Endocytosis , Escherichia coli/genetics , Escherichia coli/metabolism , Flow Cytometry , HIV Antibodies/metabolism , Humans , Lactones/chemistry , Microscopy, Confocal , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Ricin/genetics , Ricin/metabolism , Ricin/toxicity , Sesquiterpenes/chemistry
15.
J Biophotonics ; 10(11): 1538-1546, 2017 Nov.
Article En | MEDLINE | ID: mdl-28464559

Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI.


Candida albicans/drug effects , Candida albicans/radiation effects , Light , Microbial Viability/drug effects , Microbial Viability/radiation effects , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Biological Transport/radiation effects , Candida albicans/metabolism , Candida albicans/physiology , Dose-Response Relationship, Radiation
16.
Sci Rep ; 5: 7865, 2015 Jan 19.
Article En | MEDLINE | ID: mdl-25597820

Nonstructural protein 1 (NS1) is secreted by dengue virus in the first days of infection and acts as an excellent dengue biomarker. Here, the direct electrical detection of NS1 from dengue type 2 virus has been achieved by the measurement of variations in open circuit potential (OCP) between a reference electrode and a disposable Au electrode containing immobilized anti-NS1 antibodies acting as immunosensor. Egg yolk immunoglobulin (IgY) was utilized for the first time as the biological recognition element alternatively to conventional mammalian antibodies in the detection of dengue virus NS1 protein. NS1 protein was detected in standard samples in a 0.1 to 10 µg.mL(-1) concentration range with (3.2 ± 0.3) mV/µg.mL(-1) of sensitivity and 0.09 µg.mL(-1) of detection limit. Therefore, the proposed system can be extended to detect NS1 in real samples and provide an early diagnosis of dengue.


Antibodies, Viral/immunology , Dengue/diagnosis , Egg Yolk/immunology , Viral Nonstructural Proteins/immunology , Antibodies, Viral/isolation & purification , Antigens, Viral/chemistry , Antigens, Viral/immunology , Biomarkers/chemistry , Dengue/immunology , Dengue Virus/immunology , Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Electrodes , Enzyme-Linked Immunosorbent Assay , Immunoglobulins/isolation & purification , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/isolation & purification
17.
Luminescence ; 29(8): 1047-52, 2014 Dec.
Article En | MEDLINE | ID: mdl-24760547

Natural rubber membranes were fabricated using latex from Hevea brasiliensis trees (clone RRIM 600) by casting, and controlling the time and temperature of thermal treatment. Three temperatures were used: 65, 80 and 120 °C and the corresponding annealing times of 6, 8, 10 and 12 h. The centrifugation of the latex produces the constituent phases: solid rubber (F1), serum or protein components (F2) and bottom fraction (F3). The photoluminescence properties could be correlated with organic acid components of latex. Natural rubber membranes were used as the active substrate (reducing agent) for the incorporation of colloidal Au nanoparticles synthesized by in situ reduction at different times. The intensity of photoluminescence bands assigned to the natural rubber decreases with the increase in amount of nanoparticles present on the membrane surface. It can be assumed that Au nanoparticles may be formed by reduction of the Au cation reacting with functional groups that are directly related to photoluminescence properties. However, the quenching of fluorescence may be attributed to the formation of a large amount of metal nanostructures on the natural rubber surface.


Gold/chemistry , Latex/chemistry , Luminescence , Membranes, Artificial , Nanoparticles/chemistry , Rubber/chemistry , Carboxylic Acids/chemistry , Hevea , Microscopy, Atomic Force , Photolysis , Plant Proteins/chemistry , Solutions , Spectrophotometry, Ultraviolet , Temperature
18.
J Nanosci Nanotechnol ; 14(9): 6653-7, 2014 Sep.
Article En | MEDLINE | ID: mdl-25924312

Porous alumina was used to build an optical sensor for gaseous ethanol detection. The photoluminescence collected in a grazing angle was used as a transducer signal. The photoluminescence detected with this optical setup shows well resolved Fabry-Pérot type interference fringes at room temperature, whose position and shape are strongly dependent on the ethanol fraction adsorbed on the porous alumina surface. According to the surface porous morphology, different finesse and resolution between the emission fringes were observed. The analytical response of the sensor was tested in terms of spectral displacement of the fringes when in contact with gaseous ethanol. The sensor was tested for different temperatures and at 25 degrees C it presented the highest sensibility. The difference in the sensibility is a function of the temperature and can be related both to the modification of ethanol vapor pressure and the kinetics of adsorption processes at the walls of the glass cell and the porous alumina sample.

19.
J Nanosci Nanotechnol ; 14(9): 6658-61, 2014 Sep.
Article En | MEDLINE | ID: mdl-25924313

The detection and quantification of neurotransmitter acetylcholine (ACh) are relevant because modifications in the ACh levels constitute a threat to human health. The biological regulator of this neurotransmitter is acetylcholinesterase (AChE), an enzyme that catalyzes the hydrolysis of ACh to choline and acetic acid. However, its activity is inhibited in the presence of organophosphate and carbamate pesticides, compromising the degradation of the neurotransmitter. There has been a growing interest in faster and more sensitive detection systems that include new methods and materials for the determination of the ACh concentration. This paper proposes a potentiometric biosensor for the detection of neurotransmitter ACh and its inhibitors, specifically organophosphate pesticide methamidophos. The biosensor is based on a self-assembled platform formed by poly(allylamine) hydrochloride (PAH) and silicon dioxide nanoparticles (SiO2-Np) that contains the immobilized enzyme AChE. First, the responses of the biosensor were investigated for different concentrations of ACh in buffer solutions. After quantifying ACh, the inhibition of AChE in the presence of methamidophos was determined, enabling the quantification of methamidophos expressed as the percentage of enzyme inhibition. The potential advantages of this biosensor include simplicity in building the electrode, possible production on an industrial scale, limited need for qualified personnel to operate the device and low processing cost.


Acetylcholine/antagonists & inhibitors , Acetylcholine/analysis , Biosensing Techniques/instrumentation , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Acetylcholine/metabolism , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Biosensing Techniques/methods , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Insecticides/analysis , Organothiophosphorus Compounds/analysis
20.
Mater Sci Eng C Mater Biol Appl ; 33(7): 3899-902, 2013 Oct.
Article En | MEDLINE | ID: mdl-23910293

This paper reports on the use of the crude extract of avocado (CEA) fruit (Persea americana) as a source of tyrosinase enzyme. CEA was immobilized via layer by layer (LbL) technique onto indium tin oxide (ITO) substrates and applied in the detection of monophenol using a potentiometric biosensor. Poly(propylene imine) dendrimer of generation 3 (PPI-G3) was used as a counter ion in the layer by layer process due to its highly porous structure and functional groups suitable for enzyme linkage. After the immobilization of the crude CEA as multilayered films, standard samples of monophenol were detected in the 0.25-4.00 mM linear range with approximately 28 mV mM(-1) of sensitivity. This sensitivity is 14 times higher than the values found in the literature for a similar system. The results show that it is possible to obtain efficient and low-cost biosensors for monophenol detection using potentiometric transducers and alternative sources of enzymes without purification.


Biosensing Techniques/methods , Complex Mixtures/chemistry , Monophenol Monooxygenase/metabolism , Persea/enzymology , Phenol/analysis , Phenols/analysis , Catechols/analysis , Polypropylenes/chemistry , Potentiometry , Solutions , Spectrophotometry, Ultraviolet , Tin Compounds/chemistry
...